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1. INTRODUCTION

Forty years ago in the dark days of the second world war the Dutch engineer
A. BosMmaN constructed the so-called Pythagoras tree reproduced here in
fig.1.1. It must have taken him many, many hours at the drawingboard. But
now with a personal computer and a plotter a nice tree can be formed within
an hour and generalizations can be made to order.

Our research on this tree actually started when we tried to determine the set
of infinitesimally small squares formed in the limit if the construction is
continued indefinitely. Let J denote the closure of this set then J, which we
call the blossom of the Pythagoras tree, is a continuous curve which is invariant
(i.e. mapped into itself) under two (!) similarity transformations 4 and B.
Coordinates can be chosen in such a way that in complex notation

A: z 1+ (1+i)z /2,
{B: 2o+ (=i) /2. a.b

We see that 4 has 1+ as its centre of rotation (or fixed point), the reduction
factor 1/ V2 and the rotation angle 7 /4. For B the centre is at 1—i with
reduction factor 1/1/2 and rotation angle —x /4. Both centres 1+i are
elements of J. More points of J (in fact a dense subset of it) can be obtained
from them by subjecting them to a random sequence of operations of 4 and
B. In this way fig.1.2 has been obtained as part of the blossom of the
Pythagoras tree.

J is a continuous image of the unit interval 0 < r < 1. Let r (r <I) have
the binary expansion

r = 0.ryryry- (1.2)
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FIGURE 1.1. The Pythagoras tree
and define for k = 1
sg. = (1—rp)a + b,
with
a=0+i)/2, b=0-i)/2.

(1.3)

(1.4)



This means that s; is either a or b according to the value 0 or 1 of the kth

binary digit of r. Then to r we may associate the following point of J
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FIGURE 1.2. (Part of) the limit set of the Pythagoras tree



z =¢cgt+cy teyteytm (1.5)
wherecy = land for k = 1

Cr = SkCp—1 (1.6)
Thus to r =0 corresponds the point

z = l+a+a*+a’+..=1/(1—a) = 1+i,
the fixed point of 4, and tor = 1/3 = .010101- corresponds

z = l+a+ab+a% +a*?+a’b*+ = 3+i.
On J the actions of 4 and B are then translated into

A: rer /2,
B: ro(1+r)/2 (L7

Thus a random sequence of transformations 4 and B corresponds to a
uniform distribution of numbers in (0,1) and accordingly to what one could
call a uniform distribution of points on J.

The obvious generalization is to give a and b arbitrary complex values with
la|<1 and |b|<1. The problem of determining the conditions under which
the resulting curve can be considered as the limit set of some Pythagoras tree
will be taken up in the next section 2.

There is a little problem about rational numbers with a terminating binary
expansion. Sequences like .1000-- and .0111- represent the same rational
number (1/2). However, a simple calculation shows that for a +b = 1 the
corresponding sequences of complex numbers 1+b +ab +a% + a’b+ - - -
and 1+a +ab +ab*+ab>+ - - - also represent the same point.

The overall situation is very reminiscent of the inverse logistic map in its
complex form as studied by MANDELBROT [1]

z/ = = Vz+pu (1.8)

We follow up this analogy in more detail in section 3. Its main features are as
follows. For suitable values of u this two-valued map (1.8) has a Julia set
(cf.[1]) as the collection of limit points of random iterative sequences. The fixed
points are p /2 and 1—p /2 where p = (p>*—2p) /4 in the usual notation of
the logistic map as x — px(1—x). In fact, both the more general version of

(1.1)
z’=1+4+az or z/ =1+ bz, (1.9)

and (1.8) can be considered as the members of a family of quadratic (2,2)-
maps described by a relation of the form

F(z'z) = 0, (1.10)

where F is a quadratic polynomial of its arguments. In particular the blossom
of the Pythagoras tree and the San Marco attractors (cf.[1]) can be interpreted
as Julia sets of the map (1.10). However, the theory of iterated analytic maps



(cf[2]) is only fully developed for the case that z’(z) (or its inverse) is a
single-valued meromorphic analytic function. The examples given here may
give rise to an extension of the theory to algebraic functions of the kind (1.10).

2. THE PYTHAGORAS TREE

In the introduction we have seen that the construction of BosMAN’s Pythagoras
tree can be based upon sequences of complex numbers (1.5), (1.6) with a and
b given by (1.4). In fig.2.1 the initial part of what we call the skeleton of a tree
is given. The endpoints Py (z;) of the successive branches can be labelled in
such a way that

zg =0, zy =1, z,=1+a, z3=1+b,
z4 = l+a+a% z5 = 1+a+ab, etc

E.g. for k = 50, which is 110010 in binary notation, we have
259 = 1+b+ab +a* +a*h>+a’b>

What we have done in fig.2.1 with the special values of a and b can be done
for any values of a and b. In this way we obtain a similar tree. The question
arises whether such a tree can be interpreted as the skeleton of a generalized
Pythagoras tree. Can we put squares or quadrilaterals onto the branches?

Before that question can be answered we need a little more analysis of the
tree of fig.2.1 which we now interpret as an illustration of the general case. The
tree is transformed into itself by either similarity transformation

A: z 1+ az, .
B: ze1++ bz @

The fixed points of these transformations, 1 /(1—a), 1 /(1—b) are indicated
in fig2.1 by 4 and B. An endpoint with index k is transformed into an
endpoint with a higher index. In particular

Azsg = zgp, Bzsp = zpia
The general rule is as follows. Let
2" <k < 2mtl
then symbolically
Ak) = k+2", Bk)=k+2m*\.

We now consider the central question under what conditions for @ and b the
tree of fig.2.1 can be blown up into a generalized Pythagoras tree. By this we
understand a tree like fig.1.1 where the basic pattern is a triangle with similar
quadrilaterals on its sides. In fig.1.1 the quadrilaterals are squares and the
triangle is half a square. If the triangle is rectangular but not isosceles the tree
is called an oblique Pythagoras tree. In all other cases the tree is called a
generalized Pythagoras tree.



FIGURE 2.1. Initial part of the skeleton of the Pythagoras tree

In view of the similarity transformations (2.1) it is sufficient to consider the
first three branches with the first three quadrilaterals as shown in fig.2.2. Let
UU’'V’V be the first quadrilateral with U’ = A(U) and V’ = B(V) then
there exists a point W which is both the 4 -image of V' as well as the B-image
of U. Labelling U and V' by complex numbers ¥ and v we obtain the
condition

1+bu = 1+av

so that bu = av. This suggests the following construction. Let a and b be
arbitrary complex numbers, of course with |a| <1, |b| <1 and a /b not
real, then for any complex number A a generalized Pythagoras tree can be
constructed. The first quadrilateral is determined by the corners

Aa, Ab, 1+Aa? 1+\b2 22)



1

ExampLE. For a = 3(1+i), b = 4(3—2i) and A =1 we obtain a
quadrilateral with the comer points (1+i)/2, (3—2i)/4, (2+i)/2,
(21—12i) / 16.

The situation is sketched in fig.2.2. The quadrilateral is a trapezium here. A
simple calculation shows that always U’V’/ UV when a+b is real. When
the vectors UU’ and V'V’ are equal, the quadrilaterals are parallelograms. In
that case we should have A(b2—a?) = A(b —a) which gives the condition

FIGURE 2.2. The beginning of a generalized Pythagoras tree



a+b =1 (2.3)
We may write
a = (1+ic)/2, b = (1—ic)/2 24)

where ¢ = i(b —a) is an arbitrary complex number for which |a| < 1 and
|b] < 1. Thus c¢ is restricted to a lens-shaped region bounded by the two
circular arcs defined by [c==i| < 2.

The quadrilaterals are squares if

iv—u) =u'—u
ie. if

(1+Aa?) — Aa = i\b —a).
Substitution of (2.4) gives the unique solution

4
A= —5—-— 2.5
c*+dc+1 @)
So given a and b satisfying (2.4) unless ¢ = —2+V3 a generalized
Pythagoras tree with squares can be constructed. An oblique Pythagoras tree,
i.e. a tree with squares and right-angled triangles, calls for a further
specialization. A simple calculation shows that this requires that

¢ = —iexp2ai), 0 < a<w/4

and hence

2 (2.6)

a — isinacosa

a = cos’a + isinacosa,
b = sin

Finally for @ = 7 /4 the original symmetric Pythagoras tree is obtained.

The corresponding geometric situation for an oblique tree is sketched in
fig.2.3 (where @ = 27 /9).

A ‘full’ oblique Pythagoras tree with « = « /5 is given in fig.2.4. The limit
set of the infinitesimally small squares, its blossom, is given in fig.2.5. In the
computer program it is obtained as the invariant set of the similarity
transformations

zeb l+az, z o 1+bz

with a and b given by (2.6). Each fixed point 1 /(1—a) and 1 /(1—b) is
subjected to random sequences of similarity transformations.
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FIGURE 2.4. An oblique Pythagoras tree witha = 7 /5
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FIGURE 2.5. The limit set of an oblique Pythagoras tree with a = 7 /5
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3. JULIA SETS

A Julia set is a certain invariant set of an analytic map z  f(z). It is
obtained as the closure of the set of all unstable periodic points. Definitions,
properties and many details can be found in the excellent survey paper by
BLANCHARD [2]. In many cases the Julia set is a non-differentiable curve or a
totally disconnected point set. The very special case

Zo—-»z2

already shows many features of the general case. The Julia set is the unit
circle here. It is densely covered by the pre-images of any of its points. It is a
separatrix separating orbits converging to z =0 and orbits diverging to z = co.
It is an attractor of the inverse map z —» *=Vz .

Much attention has been paid to the properties of the quadratic map

zmzt—p 3.1

in the literature. Only for p = 0 and p = 2 do we have a Julia set in the form
of a simple curve or arc. For p = 3 /4 the Julia set has a nice shape called the
‘San Marco attractor’ by MANDELBROT. It is given in fig.3.1. The computer
program is very similar to that for the blossom of the Pythagoras tree. Points
of the Julia set are obtained from the iteration process

Zk+1 = O Vit zy, (3.2)

where o;, k € N is a random sequence of + 1’s and where zo = —1/2, a
critically stable fixed point which is an element of the Julia set.
The Julia set of (3.1) is invariant under the two transformations

A: z - Vp+tz,
B: zw» — Vptz 3.3)

the two inverses of (3.1). If this is compared with the corresponding
transformations (2.1) of the generalized Pythagoras tree, we observe a striking
similarity. The limit set of a Pythagoras tree and the Julia set of the quadratic
transformation (3.3) appear to have common features. We have seen that the
limit points of the Pythagoras tree formed from

zw»l+az, z1+ bz 3.4
with la| < 1, |b| < 1 are explicitly given by
z = 1+ 2 apaaj ay, (3.5)
k=0

with

(3.6)

a. = a ifrk=0,
ak=b ifrk:1,

13
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FIGURE 3.1. The San Marco attractor, the Julia set of z + z2 — 3 /4

where r; is the kth binary digit of the binary expansion of a fraction r. Thus
to each point of the limit set J corresponds a real number of [0,1]. (There is a
little ambiguity for binary expansions terminating in an endless string of zeros
or ones, but this concerns only a countable subset of J.)
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The dynamics on the limit set J can be described by (see fig.3.2)

Az: rw-r /2,
Bz: r(l4r)/2. C)
J Y
1
0 -
0 1

FIGURE 3.2.

This double-valued transformation has a unique inverse which is perhaps the
simplest transformation showing chaotic behaviour.

Let us next consider the quadratic map (3.3) for the case p = 2. Then we
may use the parametrization

z = 2 cosmr. (3.8)
Substitution gives at once
Az: r—r /2,

Bz: rs1—r/2, 39

the well-known tent map closely related to the map 3.7).

Thus there is every reason to extend the notion of the Juha set to non-
unique analytic mappings. In both cases we have considered here the limit set
J has the same chaotic behaviour. If z is an arbitrary point of J, then the
sequences formed by subjecting z either to 4 or to B in some pseudo-random

15



manner, e.g. prescribed by the binary digits of the binary expansion of a
fraction, almost never converge. A generalized Julia set may then be defined as
the limit set of all sequences found in this way from two or more analytic
transformations, 4,B etc. provided it exists. If the transformations are the
branches of the inverse of a single-valued analytic function this coincides with
the traditional definition. It would be tempting to sketch a general theory but,
in our opinion, it is better to start with a number of interesting special cases.
We end this paper by considering the following (2-2)-complex map in which
both the Pythagoras tree and the quadratic map are combined. We consider

Fwz)=0 (3.10)

where F is a quadratic polynomial. It is assumed that w =z = =1 are fixed
points with multipliers dw /dz equal to a and b. Then F is determined by a
further single complex parameter ¢ and can be written as

(w—az—1+a)w—bz+1—b)+c(w—z)> = 0. (3.11)
For ¢ = 0 this reduces to the Pythagoras map
w=1+a(z—-1),
{w = =1+ b(z+1). (.12)
For ¢ = —ab = —3(a +b) the quadratic map is obtained in the form
sVA+e)/cwi=1)+w —z = 0. (3.13)

The maps (3.13) and (3.1) are equivalent with the following relation between
the parameters

dpc = 1. (3.14)
In particular the San Marco attractor is obtained for @ = —1, b =1/3,
¢ =1/3as

wi+w —1=2 (3.15)
As an illustration we consider the special case

a=0+i)/2, b=(U-i)/2, ¢ = — %
The multipliers are those of the Pythagoras tree (1.1). The value ¢ = —7 is
chosen halfway the value ¢ = 0 of the Pythagoras tree and ¢ = —75 of the

quadratic map. The result shown in fig.3.3 looks like the blossom of a
generalized Pythagoras tree but has the caulifiower structure of known Julia
sets of the quadratic map (see [2]). Shown are 1000 pre-images of the point
z = 1 which is a fixed point of (3.13). It is a safe conjecture that this Julia set
is entirely disconnected.
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FIGURE 3.3. A generalized Julia set

a2e last illustration may give an idea of what to expect in a more general
ition. We took
A: zel+iz /2,
B: za(l+zy)/z,
a == 4 /5. The fixed point of 4 is 0.8 + i0.4. The fixed points of B are

In fig34 we have shown a representative part of the corresponding
Talized Julia set with z = 2 as the starting-point of a random sequence.

(3.16)
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FIGURE 3.4. A generalized Julia set
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